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Abstract

It is often argued that additional constraints on redistribution such as granting veto power to more
players in society better protects property from expropriation. We use a model of multilateral bargaining
to demonstrate that this intuition may be flawed. Increasing the number of veto players or raising the
supermajority requirement for redistribution may reduce protection on the equilibrium path. The reason
is the existence of two distinct mechanisms of property protection. One is formal constraints that allow
individuals or groups to block any redistribution that is not in their favor. The other occurs in equilibrium
where players without such powers protect each other from redistribution. Players without formal veto power
anticipate that the expropriation of other similar players will ultimately hurt them and thus combine their
influence to prevent redistributions. In a stable allocation, the society exhibits a “class”structure with class
members having equal wealth and strategically protecting each other from redistribution.
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1 Introduction

Economists have long viewed protection of property rights as a cornerstone of effi ciency and eco-

nomic development (e.g., Coase, 1937, Alchian, 1965, Hart and Moore, 1990). Yet, from a political

economy perspective, property rights should be understood as equilibrium outcomes rather than

exogenous constraints. Legislators or, more generally, any political actors cannot commit to enti-

tlements, prerogatives, and rights. Whether property rights are effectively protected depends on

the political economy of the respective society and its institutions. The idea that granting veto

power to different actors in the society enhances protection dates back at least to the Roman re-

public (Polybius [2010], Machiavelli 1515[1984]) and, in modern times, to Montesquieu’s Spirit of

the Laws (1748[1989]) and the Federalist papers, the intellectual foundation of the United States

Constitution. In essay No. 51, James Madison argued for the need to contrive the government “as

that its several constituent parts may, by their mutual relations, be the means of keeping each other

in their proper places.”Riker (1987) concurs: “For those who believe, with Madison, that freedom

depends on countering ambition with ambition, this constancy of federal conflict is a fundamental

protection of freedom.”

In modern political economy, an increased number of veto players has been associated with

beneficial consequences. North and Weingast (1989) argued that the British parliament, empowered

at the expense of the crown by the Glorious Revolution in 1688, provided “the credible commitment

by the government to honour its financial agreement [that] was part of a larger commitment to

secure private rights”. Root (1989) demonstrated that this allowed British monarchs to have

lower borrowing costs compared to the French kings. In Persson, Roland, and Tabellini (1997,

2000), separation of taxing and spending decisions within budgetary decision-makings improves

the accountability of elected offi cials and limits rent-seeking by politicians.

We study political mechanisms that ensure protection against expropriation by a majority. In

practice, institutions come in different forms such as the separation of powers between the legisla-

tive, executive, and judicial branches of government, multi-cameralism, federalism, supermajority

requirements and other constitutional arrangements that effectively provide some players with veto

power. One of the first examples was described by Plutarch [2010]: the Spartan Gerousia, the

Council of Elders could veto motions passed by the Apella, the citizens’assembly. In other polities,

it might be just individuals with guns who have effective veto power. Essentially, all these institu-

tions allow individuals or collective actors to block any redistribution without their consent. If we

interpret property rights as institutions that allow holders to prevent reallocations without their

consent, then we can formally investigate the effect of veto power on the allocation of property.

In addition to property rights, formalized in constitutions or codes of law, i.e., game forms in

a theoretical model, property rights might be protected as equilibrium outcomes of interaction of
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strategic economic agents. The property rights of an individual may be respected not because he is

powerful enough to protect them on his own, i.e., has veto power, but because others find it in their

respective interest to protect his rights. Specifically, members of a coalition, formed in equilibrium,

have an incentive to oppose the expropriation of each other because they know that once a member

of the group is expropriated, others will be expropriated as well. As a result, the current allocation

of assets might be secure even in the absence of explicit veto power.

If property rights may emerge from strategic behavior of rational economic agents, such rights

are necessarily dynamic in nature. A status quo allocation of assets stays in place for the next

period, unless it is changed by the political decision mechanism in which case the newly chosen

allocation becomes the status quo for the next period. This makes models of legislative bargaining

with the endogenous status-quo (following Baron, 1996, and Kalandrakis, 2004, 2007) the nat-

ural foundation for studying political economy of redistribution and protection of property from

expropriation.1

In our model, agents, some of which have veto power, decide on allocation of a finite number of

units. If the (super)majority decides on redistribution, the new allocation becomes the status-quo

for the next period. We start by showing that non-veto players build coalitions to protect each

other against redistribution. Diermeier and Fong (2011) demonstrated that with a sole agenda-

setter, two other players could form a coalition to protect each other from expropriation by the

agenda-setter. However, this feature is much more general: our Propositions 1-3 show that such

coalitions form in a general multilateral setting with any number of veto players. The size of a

protective coalition is a function of the supermajority requirement and the number of veto players.

Example 1 demonstrates that with five players, one of which has veto power, three non-veto players

with equal wealth form a coalition to protect each other.

Example 1 Consider five players who decide how to split 10 indivisible units of wealth, with the

status quo being (1, 2, 3, 4; 0). Player #5 is the sole veto player and proposer, any reallocation

requires a majority of votes, and we assume that when players are indifferent, they support the

proposer. In a standard legislative bargaining model, the game ends when a proposal is accepted.

Then, player #5 would simply build a coalition to expropriate two players, say #3 and #4, and

capture the surplus resulting in (1, 2, 0, 0; 7). However, this logic does not hold in a dynamic model

where the agreed upon allocation can be redistributed in the subsequent periods. That is, with the

new status quo (1, 2, 0, 0; 7), player #5 would propose to expropriate players #1 and #2 by moving

to (0, 0, 0, 0; 10), which is accepted in equilibrium. Anticipating this, players #1 and #2 should

1Recent contributions to this literature include Anesi and Seidmann (2014, 2015), Anesi and Duggan (2015, 2016),
Baron and Bowen (2013), Bowen and Zahran (2012), Diermeier and Fong (2011, 2012), Duggan and Kalandrakis
(2012), Kalandrakis (2010), Richter (2013), Vartiainen (2014), and Nunnari (2016). We discuss the existing literature
and its relationship to our results in Section 5.
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not agree to the first expropriation, thus becoming the effective guarantors of property rights of

players #3 and #4. Starting with (1, 2, 3, 4; 0), the ultimate equilibrium allocation might be either

(3, 3, 3, 0; 1) or (2, 2, 2, 0; 4) or (2, 2, 0, 2; 4); in either case, at least three players will not be worse

off. In general, an allocation is stable if and only if there is a group of three non-veto players of

equal wealth, and the remaining non-veto player has an allocation of zero.

The fact that all non-veto players who are not expropriated in Example 1 have the same wealth

in the ultimate stable allocation is not accidental. With a single proposer, we cannot isolate the

impact of veto power from the impact of agenda-setting power; non-veto players have no chance to

be agenda-setters, and their action space is very limited. With multiple veto players and multiple

agenda-setters without veto power, we demonstrate that the endogenous veto groups have a certain

“class structure”: in a stable allocation, most of the non-veto players are subdivided into groups

of equal size, within each of which individual players have the same amount of wealth, whereas the

rest of the society is fully expropriated. While we make specific assumptions to single out equilibria

to focus on, the “class structure”is robust (see Section 5 for the discussion).

Example 2 Consider the economy as in Example 1, yet 4 votes, rather than 3, are required to

change the status quo. Now, if the initial status quo is (1, 2, 3, 4; 0), which is unstable, the ultimate

stable allocation will be (1, 3, 3, 1; 2), i.e. two endogenous veto groups will be formed (players #1

and #4 form one, and #2 and #3 form the other). In general, with 5 players, 1 veto player and 4

votes required to change the status quo, all stable sets are of the following form, up to permutations:

(x1, x2, x3, x4;x5) with x1 = x2 and x3 = x4. This is the simplest example of a society exhibiting a

nontrivial class structure.

The number and size of these endogenous classes vary as a function of the number of veto

players and the supermajority requirements. Perhaps paradoxically, adding additional exogenous

protection (e.g., by increasing the number of veto players) may lead to the break-down of an

equilibrium with stable property rights, as the newly empowered player (the one that was granted

or has acquired veto power) now no longer has an incentive to protect the others. Thus, by adding

additional hurdles to expropriation in the form of veto players or super-majority requirements (see

Example 4 below), the protection of property rights may in fact be eroded. In other words, players’

property may be well-protected in the absence of formal constraints, while strengthening formal

constraints may result in expropriation. Our next example demonstrates this effect more formally.

Example 3 As in Example 1, there are 5 players and 3 votes are required to make a change,

but now there are two veto players instead of one, #4 and #5. Allocations (x1, x2, x3;x4, x5), in

which at least one of players #1, #2, #3 has zero wealth and at least one has a positive amount,

are unstable as the two veto players will obtain the vote of one player an allocation of zero and
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redistribute the assets of the remaining two players. One can prove that an allocation is stable if

and only if x1 = x2 = x3 (up to a permutation). This means that if we start with (3, 3, 3, 0; 1) ,

which was stable with one veto player, making player #1 an additional veto player will destroy

stability. As a result, the society will move either to an allocation in which all 10 units are split

between the two veto players, or to some allocation where the non-veto players form an endogenous

veto group that protects its members from further expropriation, e.g., (4; 1, 1, 1; 3), in which #2-4

form such group.

We see here an interesting phenomenon. The naive intuition would suggest that giving one

extra player (player #1 in this example) veto power would make it more diffi cult for player #5 to

expropriate the rest of the group. However, the introduction of a new veto player breaks the stable

coalition of non-veto players, and makes #5 more powerful. Before the change, non-veto players

sustained an equal allocation, precisely because they were more vulnerable individually. With only

one veto player and an equal allocation for players #1, #2, and #3, the three non-veto players

form an endogenous veto group, which blocks any transition that hurts the group as a whole (or

even one of them). An additional veto player makes expropriation more, not less, likely. Note that

both the amount of wealth being redistributed and the number of players affected by expropriation

are significant. The number of players who stand to lose is two, close to a half of the total number

of players, and at least 4 units, close to a half of the total wealth is redistributed through voting. In

Proposition 4, we show that the class structure, which is a function of the number of veto players

and the supermajority requirement, determines a limit to the amount of wealth redistributed after

an exogenous shock to one player’s wealth.

In addition to granting veto rights, changes to the decision-making rule (e.g., the degree of

supermajority) can also have a profound, yet somewhat unexpected effect on protection of property.

Higher supermajority rules are usually considered safeguards that make expropriation more diffi cult,

as one would need to build a larger coalition. The next example shows that this intuition is flawed as

well: in a dynamic environment, increasing the supermajority requirements may trigger additional

redistribution.

Example 4 As above, there are 5 players that make redistributive decisions by majority, and one

of which (#5) has veto power. Allocation (3, 3, 3, 0; 1) is stable. Now, instead of a change in the

number of veto players, consider a change in the supermajority requirements. If a new rule requires

4 votes, rather than 3, the status quo allocation becomes unstable. Instead, a transition to one

of the allocations that become stable, (3, 3, 0, 0; 4) or (4, 4, 0, 0; 2), will be supported by coalition

of four players out of five. (The veto-player, #5, benefits from the move, #4 is indifferent as he

gets 0 in both allocations, and #1-2 will support this move as they realize that with the new

supermajority requirement they form a group which is suffi cient to protect its members against any
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expropriation.) Thus, an increase in supermajority may result in expropriation and redistribution.

As Example 4 demonstrates, raising the supermajority requirement does not necessarily

strengthen property rights as some players are expropriated as a result. Proposition 6 estab-

lishes that this phenomenon, as well as the one discussed in Example 3, is generic: adding a veto

player or raising the supermajority requirement almost always leads to a wave of redistribution. To

obtain the comparative statics results described in Examples 3 and 4 (Propositions 5 and 6), we

use a general characterization of politically stable allocations in a multilateral-negotiations settings

(Proposition 3). These results contrast with the existing consensus in the literature, summarized

by Tsebelis (2002): “As the number of veto players of a political system increase, policy stability

increases”.

Redistribution through over-taxation (e.g., Persson and Tabellini, 2000) or an outright expro-

priation (e.g., Acemoglu and Robinson, 2006) has been the focus of political economy studies since

at least Machiavelli (1515)[1984] and Hobbes (1651)[1991]. A large number of works explored the

relationship between a strong executive and his multiple subjects (e.g., Greif, 2006, on the institute

of podesteria in medieval Italian cities; Haber et al., 2003, on the 19th century Mexican presidents;

or Guriev and Sonin, 2009, on Russian oligarchs). Acemoglu, Robinson, and Verdier (2004) and

Padro i Miquel (2006) build formal divide-and-rule theories of expropriation, in each of which a

powerful executive exploited the existing cleavages for personal gain. In addition to the multilat-

eral bargaining literature, policy evolution with endogenous quo is studied, among others, in Dixit,

Grossman, and Gul (2000), Hassler, Storesletten, Mora, and Zilibotti (2003), Dekel, Jackson, and

Wolinsky (2009), Battaglini and Coate (2007, 2008), and Battaglini and Palfrey (2012). To this

diverse literature, our model adds the emergence of “class politics”; also, we demonstrate that

introduction of formal institutions of property rights protection might result, in equilibrium, in less

protection than before.

The remainder of the paper is organized as follows. Section 2 introduces our general model.

In Section 3, we establish the existence of (pure-strategy Markov perfect) equilibrium in a non-

cooperative game and provide full characterization of stable wealth allocations. Section 4 focuses

on the impact of changes in the number of veto players or supermajority requirements. In Section 5,

we discuss our modeling assumptions and robustness of our results, while Section 6 concludes. The

Online Appendix contains technical proofs and some additional examples and counterexamples.

2 Setup

Consider a set N of n = |N | political agents who allocate a set of indivisible identical objects
between themselves. In the beginning, there are b objects, and the set of feasible allocations is
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therefore

A =
{
x ∈ (N ∪ {0})n :

∑n

i=1
xi ≤ b

}
.

We use lower index xi to denote the amount player i gets in allocation x ∈ A throughout the paper,

and we denote the total number of objects in allocation x by ‖x‖ =
∑

i∈N xi.

Time is discrete and indexed by t > 0, and the players have a common discount factor β. In

each period t, the society inherits xt−1 from the previous period (x0 is given exogenously) and

determines xt through an agenda-setting and voting procedure. A transition from xt−1 to some

alternative y ∈ A is feasible if ‖y‖ ≤
∥∥xt−1

∥∥; in other words, we allow for the objects to be wasted,
but not for the creation of new objects.2 For a feasible alternative y to defeat the status quo xt−1

and become xt, it needs to gain the support of a suffi ciently large coalition of agents.

To define which coalitions are powerful enough to redistribute, we use the language of winning

coalitions. Let V ⊂ N be a non-empty set of veto players (denote v = |V |; without loss of generality,
let us assume that V corresponds to the last v agents n − v + 1, . . . , n), and let k ∈ [v, n] be a

positive integer. A coalition X is winning if and only if (a) V ⊂ X and (b) |X| ≥ k. The set of

winning coalitions is denoted by W:

W =
{
X ∈ 2N \ {∅} : V ⊂ X and |X| ≥ k

}
.

In this case, we say that the society is governed by a k-rule with veto players V , meaning that a

transition is successful if it is supported by at least k players and no veto player opposes it. We will

compare the results for different k and v. We maintain the assumption that there is at least one

veto player– that V is non-empty– throughout the paper; this helps us capture various political

institutions such as a supreme court. We do not require that k > n/2, so we allow for minority

rules. For example, 1-rule with the set of veto players {i} is a dictatorship of player i.
Our goal is to focus on redistribution from politically weak players to politically powerful ones,

and especially on the limits to such redistribution. We thus introduce the following assumption

to enable veto players to buy the votes of those who would otherwise be indifferent. In each

period, there is an arbitrarily small budget that the players can distribute in this period; its de-

fault size is ε, and there is another ε for each unit transferred from non-veto players to veto

players. Furthermore, to avoid equilibria where non-veto players shuffl e the units between them-

selves, we assume that there is a small transition cost δ ∈ (0, ε) that is subtracted from the

budget every time there is a transition.3 A feasible proposal in period t is therefore a pair (y, ξ)

2An earlier version of the model required that there is no waste, so
∥∥xt∥∥ =

∥∥x0∥∥ = b throughout the game, and the
results were identical. In principle, the possibility of waste can alter the set of outcomes in a legislative bargaining
model (e.g., Richter, 2013).

3 In most models of multilateral bargaining, it is standard to assume that whenever an agent is indifferent, she
agrees to the proposal (see Section 5). Otherwise, the proposer would offer an arbitrarily small amount to an
indifferent player. In our model, we assume indivisible units, but allow for such infinitesimal transfers.
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such that y ∈ A that satisfies ‖y‖ ≤
∥∥xt−1

∥∥ and ξi ∈ Rn satisfies ξi ≥ 0 for all i ∈ N and

‖ξi‖ ≤
(
1 + max

(∑
i∈V yi −

∑
i∈V x

t−1
i , 0

))
× ε − I

{
y 6= xt−1

}
× δ. Throughout the paper, we

assume 0 < δ < ε < 1−β
b+1 . (We will show that as ε, δ → 0, the equilibria converge to some equilibria

of the game where ε = δ = 0; thus, focusing on equilibria that may be approximated in this way

may be thought of as equilibrium refinement that rules out uninteresting equilibria, specifically the

ones that feature cycles.4)

The timing of the game below uses the notion of a protocol, which might be any finite sequence

of players (possibly with repetition); for existence results, however, we require it to end with a veto

player.5 We denote the set of protocols by Π, so

Π =

∞⋃
η=1

{π ∈ Nη : πη ∈ V } .

The protocol to be used is realized in the beginning of each period, taken from a distribution D that
has full support on Π (to save on notation, we assume that each veto player is equally likely to be

last one, but this assumption does not affect our results). If the players fail to reach an agreement,

the status quo prevails in the next period. Thus, in each period t, each agent i gets instantaneous

utility uti = xti + ξti and acts as to maximize his continuation utility

U ti = uti + E
∞∑
j=1

βjut+ji ,

where the expectation is taken over the realizations of the protocols in the subsequent periods.

We focus on the case where the players are suffi ciently forward looking; specifically, we assume

β > 1− 1
b+2 .

6 More precisely, the timing of the game in period t ≥ 1 is the following.

1. Protocol πt is drawn from the set of possible protocols Π.

2. For j = 1, player πtj is recognized as an agenda-setter and proposes a feasible pair
(
zj , χj

)
,

or passes.

3. If πtj passed, the game proceeds to step 5; otherwise, all players vote, sequentially, in the

order given by protocol πt, yes or no.

4. If the set of those who voted yes, Y j , is a winning coalition, i.e. Y j ∈ W, then the new
allocation is xt = zj , the transfers are ξt = χj , and the game proceeds to stage 6. Otherwise,

the game proceeds to the next stage.
4The working paper version (Diermeier, Egorov, and Sonin, 2013) contains a variant of such game with corre-

sponding refinements.
5Allowing non-veto players to propose last may in some cases lead to non-existence of protocol-free equilibria as

Example A2 in Appendix demonstrates.
6This condition means that a player prefers x + 1 units tomorrow to x units today, for any x ≤ b + 1. This

assumption is relatively weak compared to models of multilateral bargaining that require β to approach 1.
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5. If j <
∣∣πt∣∣, where |π| denotes the length of protocol π, then the game moves to stage 2 with

j increased by 1. Otherwise, the society keeps the status allocation xt = xt−1, and the game

proceeds to the next stage.

6. Each player i receives an instantaneous payoff uti.

The equilibrium concept we use is Markov Perfect equilibrium (MPE). In any such equilibrium

σ, the transition mapping φ = φσ : A × Π → A, which maps the previous period’s allocation

and the protocol realization for the current period into the current period’s allocation, is well-

defined. In what follows, we focus on protocol-free equilibria (protocol-free MPE7), namely, σ

such that φσ (x, π) = φσ (x, π′) for all x ∈ A and π, π′ ∈ Π. We thus abuse notation and write

φ = φσ : A→ A to denote the transition mapping of such equilibria.

3 Analysis

Our strategy is as follows. We start by proving some basic results about equilibria of the non-

cooperative game described above. Then, we characterize stable allocations, i.e. allocations with

no redistribution, and demonstrate that the stable allocations correspond to equilibria of the non-

cooperative game. We then proceed to studying comparative statics with respect to the number of

veto players, supermajority requirements, and equilibrium paths that follow an exogenous shock to

some players’wealth.

3.1 Non-cooperative Characterization

Consider a protocol-free MPE σ, and let φ = φσ be the transition mapping that is generated by σ

and defined in the end of Section 2. (Using transition mappings, rather than individuals’agenda-

setting and voting strategies, allows us to capture equilibrium paths in terms of allocations and

transitions, i.e., in a more concise way). Iterating the mapping φ gives a sequence of mappings

φ, φ2, φ3, . . . : A → A, which must converge if φ is acyclic. (Mapping φ is acyclic if x 6= φ (x)

implies x 6= φτ (x) for any τ > 1; we will show that every MPE satisfies this property.) Denote

this limit by φ∞, which is simply φτ for some τ as the set A is finite. We say that mapping φ is

one-step if φ = φ∞ (this is equivalent to φ = φ2), and we call an MPE σ simple if φσ is one-step.

Given an MPE σ, we call allocation x stable if φσ (x) = x. Naturally, φ∞σ maps any allocation into

a stable allocation.

Our first result deals with existence of an equilibrium and its basic properties.

Proposition 1 Suppose β > 1− 1
b+2 , ε <

1−β
b , and δ <

ε
n . Then:

7See Examples A4 and A5 in the Online Appendix, where allowing for non-Markov strategies or dropping the
requirement that transitions be the same for every protocol can lead to counterintuitive equilibria.
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1. There exists a protocol-free Markov Perfect Equilibrium σ.

2. Every protocol-free MPE is acyclic.

3. Every protocol-free MPE is simple.

4. Every protocol-free MPE is effi cient, in that it involves no waste (for any x ∈ A, ‖φ (x)‖ =

‖x‖).

These results are quite strong, and are made possible by the requirement that the equilibrium

be protocol-free. For a fixed protocol, equilibria might involve multiple iterations before reaching a

stable allocations (see Example A3 in the Online Appendix). However, these other equilibria criti-

cally depend on the protocol and are therefore fragile; in contrast, transition mappings supported

by protocol-free MPE are robust (e.g., they would remain if the protocols are taken from a different

distribution, for example).

The proof of Proposition 1 is technically cumbersome and is relegated to the Online Appendix.

However, the idea is quite straightforward. We construct a candidate transition mapping φσ that

we want to be implemented in the equilibrium. If the society starts the period in state x = xt−1

such that φ (x) = x, we verify that it is a best response for the veto players to block any transitions

except for those that are blocked by a coalition of non-veto players, and thus x remains intact. If

the society starts the period in state x such that φ (x) 6= x, we verify that there is a feasible vector

of small transfers that may be redistributed from those who strictly benefit from such transition to

those who are indifferent, and that the society would be able to agree on such vector over the course

of the protocol. The second result, the acyclicity of MPE, relies on the presence of transaction costs,

which rules out the possibility of non-veto players shuffl ing units among themselves (Example A1

in exhibits cyclic equilibria that would exist in the absence of this assumption). To show that every

protocol-free MPE is simple, we show that if there were an allocation from where the society would

expect to reach a stable allocation in exactly two steps, then for a suitable protocol it would instead

decide to skip the intermediate step and transit to the stable allocation immediately. Finally, given

that every MPE is simple, the society may always allocate the objects that would otherwise be

wasted to some veto player (e.g., the proposer) without facing adverse dynamic consequences (“the

slippery slope”), which ensures that each transitions involves no waste and the allocations are

effi cient.

The following corollary highlights that the possibility of small transfers may be viewed as an

equilibrium refinement.

Corollary 1 Suppose that for game Γ with parameter values β, ε, δ as in Proposition 1, φ = φσ

is the transition mapping that corresponds to a protocol-free MPE σ. Then consider game Γ′ with
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the same β′ = β, but ε′ = δ′ = 0. Then there exists protocol-free MPE σ′ with the same transition

mapping φσ′ = φ.

The equilibrium transitions described in Proposition 1 are not necessarily unique as the following

Example 5 demonstrates. Still, an allocation stable in one of such equilibria is stable in all such

equilibria.

Example 5 Suppose there are b = 3 units of wealth, 4 agents, the required number of votes is

k = 3, and the set of veto players is V = {#4}. In this case, there is a simple equilibrium with

transition mapping φ, under which allocations (0, 0, 0; 3), (1, 1, 0; 1), (1, 0, 1; 1) and (0, 1, 1; 1) are

stable. Specifically, we have the following transitions: φ (2, 1, 0; 0) = φ (1, 2, 0; 0) = (1, 1, 0; 1);

φ (0, 2, 1; 0) = φ (0, 1, 2; 0) = (0, 1, 1; 1); φ (2, 0, 1; 0) = φ (1, 0, 2; 0) = φ (1, 1, 1; 0) = (1, 0, 1; 1); and

any allocation with x4 = 2 has φ (x) = (0, 0, 0; 3). However, another mapping φ′ coinciding with φ

except that φ′ (1, 1, 1; 0) = (1, 1, 0; 1) may also be supported in equilibrium.

3.2 Stable Allocations

Our next goal is to get a more precise characterization of equilibrium mappings and stable alloca-

tions. Let us define a dominance relation B on A as follows:

y B x⇐⇒ ‖y‖ ≤ ‖x‖ and {i ∈ N : yi ≥ xi} ∈ W and yj > xj for some j ∈ V .

Intuitively, allocation y dominates allocation x if transition from x to y is feasible and some powerful

player prefers y to x strictly so as to be willing to make this motion, and also there is a winning

coalition that (weakly) prefers x to y. Note that this does not imply that y will be proposed or

supported in an actual voting against x because of further changes this move may lead to. Following

the classic definition (von Neumann and Morgenstern, 1947), we call a set of states S ⊂ A von

Neumann-Morgenstern- (vNM-)stable if the following two conditions hold: (i) For no two states

x, y ∈ S it holds that y B x (internal stability); and (ii) For each x 6∈ S there exists y ∈ S such that
y B x (external stability).

The role of this dominance relation for our redistributive game is demonstrated by the following

result.

Proposition 2 For any protocol-free MPE σ, the set of stable allocations Sσ =

{x ∈ A : φσ (x) = x} is a von Neumann-Morgenstern stable set for the dominance relation B.

Proposition 2 implies that the fixed points of transition mappings of non-cooperative equilibria

described in Proposition 1 correspond to a von Neumann-Morgenstern stable set. Our next result

states that such stable set is also unique; this implies, in particular, that for any two protocol-free
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MPE σ and σ′, the set of stable allocations is identical. Consequently, we are able to study stable

allocations irrespective of a particular equilibrium of the bargaining game.

The next Proposition 3 gives a precise characterization of stable allocations. To formulate it,

let us denote m = n−v, the number of non-veto players; q = k−v, the number of non-veto players
that is required in any winning coalition; d = m− q+ 1 = n− k+ 1, the size of a minimal blocking

coalition of non-veto players; and, finally, r = bm/dc, the maximum number of pairwise disjoint

blocking coalition that non-veto players may be split into.

Proposition 3 For the binary relation B, a vNM-stable set exists and is unique.8 Each element x
of this set S has the following structure: the set of non-veto players M = N \V may be split into a

disjoint union of r groups G1, . . . , Gr of size d and one (perhaps empty) group G0 of size m− rd,
such that inside each group, the distribution of wealth is equal: xi = xj = xGk whenever i, j ∈ Gk
for some k ≥ 1, and xi = 0 for any i ∈ G0. In other words, x ∈ S if and only if the non-veto
players can be permuted in such a way that

x =

λ1, . . . , λ1︸ ︷︷ ︸
d times

, λ2, . . . , λ2︸ ︷︷ ︸
d times

, . . . , λr, . . . , λr︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
m−rd times

;xm+1, . . . , xn︸ ︷︷ ︸
veto players

 .
for some λ1 ≥ · · · ≥ λr ≥ 0 such that d

∑r
j=1 λj +

∑n−m
l=1 xm+l ≤ b.

The proof of this result is important for understanding the structure of endogenous veto groups,

and we provide it in the text. We show that starting from any wealth allocation x ∈ S, it is
impossible to redistribute the units between non-veto players without making at least d players

worse off, and thus no redistribution would gain support from a winning coalition. In contrast,

starting from any allocation x /∈ S, such redistribution is possible. Furthermore, our proof will
show that there is an equilibrium where in any transition, the set of individuals who are worse off

is limited to the d− 1 richest non-veto players.

Proof of Proposition 3. We will prove that set S, as defined in Part 2, is vNM-stable, thus

ensuring existence. To show internal stability, suppose that x, y ∈ S and y B x, and let the r

groups be G1, . . . , Gr and H1, . . . ,Hr, respectively. Without loss of generality, we can assume that

each set of groups is ordered so that xGj and yHj are non-increasing in j for 1 ≤ j ≤ r. Let us

prove, by induction, that xGj ≤ yHj for all j.
The induction base is as follows. Suppose that the statement is false and xG1 > yH1 ; then

xG1 > ys for all s ∈ M . This yields that for all agents i ∈ G1, we have xi > yi. Since the total

number of agents in G1 is d, G1 is a blocking coalition, and therefore it cannot be true that yj ≥ xj
for a winning coalition, contradicting that y B x.

8Proposition A1 in the Online Appendix proves this set is also the largest consistent set (Chwe, 1994).
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For the induction step, suppose that xGl ≤ yHl for 1 ≤ l < j, and also assume, to obtain a

contradiction, that xGj > yHj . Given the ordering of groups, this means that for any l, s such that

1 ≤ l ≤ j and j ≤ s ≤ r, xGl > yHs . Consequently, for agent i ∈
⋃j
l=1Gl to have yi ≥ xi, he

must belong to
⋃j−1
s=1Hs. This implies that for at least jd− (j − 1) d = d agents in

⋃j
l=1Gl ⊂ M ,

it cannot be the case that yi ≥ xi, which contradicts the assumption that y B x. This establishes

that xGj ≤ yHj for all j, and therefore
∑

i∈M xi ≤
∑

i∈M yi. But y B x would require that xi ≤ yi
for all i ∈ V with at least one inequality strict, which implies

∑
i∈N xi <

∑
i∈N yi, a contradiction

to ‖y‖ ≤ ‖x‖. This proves internal stability of set S.
Let us now show that the external stability condition holds. To do this, we take any x 6∈ S and

will show that there is y ∈ S such that y B x. Without loss of generality, we can assume that xi

is non-increasing for 1 ≤ i ≤ m (i.e., non-veto players are ordered from richest to poorest). Let us

denote Gj = {(j − 1) d+ 1, . . . , jd} for 1 ≤ j ≤ r and G0 = M \
(⋃r

j=1Gj

)
. Since x 6∈ S, it must

be that either for some Gj , 1 ≤ j ≤ r, the agents in Gj do not get the same allocation, or they do,
but some individual i ∈ G0 has xi > 0. In the latter case, we define y by

yi =


xi if i ≤ dr or i > m+ 1;
0 if dr < i ≤ m;

xi +
∑

j∈G0 xj if i = m+ 1

(In other words, we take everything possessed by individuals in G0 and distribute it among veto

players, for example, by giving everything to one of them). Obviously, y ∈ S and y B x.
If there exists a group Gj such that not all of its members have the same amount of wealth, let j

be the smallest such number. For i ∈ Gl with l < j, we let yi = xi. Take the first d− 1 members of

group Gj , Z = {(j − 1) d+ 1, . . . , jd− 1}. Together, they possess z =
∑jd−1

i=(j−1)d+1 xi > (d− 1)xjd

(the inequality is strict precisely because not all xi in Gj are equal). Let us now take these z units

and redistribute it among all the agents (perhaps including those in Z) in the following way. For

each s : j < s < r, we let y(s−1)d = y(s−1)d+1 = · · · = ysd−1 = x(s−1)d; this makes these d agents

having the same amount of wealth and being weakly better off as the agent with number (s− 1) d

was the richest among them.

Now, observe that in each group s, we spent at most (d− 1)
(
x(s−1)d − xsd−1

)
≤

(d− 1)
(
x(s−1)d − xsd

)
. For s = r, we take d agents as follows: D = {(r − 1) d, . . . ,m} ∪ Z ′,

where Z ′ ⊂ Z is a subset of the first d− (m− (r − 1) d+ 1) = rd−m− 1 agents needed to make

D a collection of exactly d agents (notice that Z ′ = ∅ if |G0| = d− 1 and Z ′ = Z if G0 = ∅). For
all i ∈ D, we let yi = x(r−1)d (making all members of G0 weakly better off and spending at most

(d− 1)x(r−1)d units) and we let yi = 0 for each i ∈ Z \ Z ′. We have thus defined yi for all i ∈ M
and distributed

c ≤ (d− 1)
(
xjd − x(j+1)d + · · ·+ x(r−2)d − x(r−1)d + x(r−1)d

)
= (d− 1)xjd,
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having z − c > 0 remaining in our disposal. As before, we let ym+1 = xm+1 + z − c and yi = xi for

i > m+ 1. We have constructed y ∈ S such that ‖y‖ = ‖x‖, ym+1 > xm+1 and {i ∈ N : yi < xi} ⊂
Z. The latter, given |Z| ≤ d−1, implies {i ∈ N : yi ≥ xi} ∈ W, which means y B x. This completes
the proof of external stability, and thus S is vNM-stable.

Let us now show that S is a unique stable set defined by B.9 Suppose not, so there is S′ that is
also vNM-stable. Let us prove that x ∈ S⇔ x ∈ S′ by induction on

∑
i∈M xi. The induction base

is trivial: if xi = 0 for all i ∈M , then x ∈ S by definition of S. If x /∈ S′, then there must be some
y such that y B x. But for such y,∑

i∈N
yi ≥

∑
i∈V

yi >
∑

i∈V
xi =

∑
i∈N

xi,

which contradicts ‖y‖ ≤ ‖x‖.
The induction step is as follows. Suppose that for some x with

∑
i∈M xi = j > 0, x ∈ S but

x /∈ S′ (the vice-versa case is treated similarly). By external stability of S′, x /∈ S′ implies that for
some y ∈ S′, y B x, which in turn yields that

∑
i∈V yi >

∑
i∈V xi and ‖y‖ ≤ ‖x‖. We have∑

i∈M
yi = ‖y‖ −

∑
i∈V

yi < ‖x‖ −
∑

i∈V
xi =

∑
i∈M

xi = j.

For y such that
∑

i∈M yi < j induction yields that y ∈ S⇔ y ∈ S′, and thus y ∈ S. Consequently,
there exists some y ∈ S such that y B x, but this contradicts x ∈ S. This contradiction establishes
uniqueness of the stable set.�

Proposition 3 enables us to study the set of stable allocations S without reference to a particular

equilibrium σ. The characterization obtained in this Proposition gives several important insights.

First, the set of stable allocations (fixed points of any transition mapping under any equilibrium)

does not depend on the mapping; it maps into itself when either the veto players V or the non-veto

players N \ V are reshuffl ed in any way. Second, the allocation of wealth among veto players does

not have any effect on stability of allocations. Third, each stable allocation has a well-defined

“class”structure: every non-veto player with a positive allocation is part of a group of size d (or a

multiple of d) of equally-endowed individuals who have incentives to protect each other’s interests.10

To demonstrate how such protection works, consider the following example.

Example 6 There are b = 12 units, n = 5 individuals with one veto player (#5), and the su-

permajority of 4 is needed for a transition (k = 4). By Proposition 3, stable allocations have two

groups of size two. Let φ be a transition mapping for some simple MPE σ, and let us start with
9An alternative (non-constructive) way to prove uniqueness is to use a theorem by von Neumann and Morgenstern

(1947) that states that if a dominance relation allows for no finite or infinite cycles, the stable set is unique.
10 It is permissible that two groups have equal allocations, xGj = xGk , or that members of some or all groups get

zero. In particular, any allocation x where xi = 0 for all i ∈M is in S. Notice that if non-veto players get the same
under two allocations x and y, so x|M = y|M , then x ∈ S ⇔ y ∈ S; moreover, this is true if xi = yπ(i) for all i ∈ M
and some permutation π on M .
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stable allocation x = (4, 4, 2, 2; 0) . Suppose that we exogenously remove a unit from player #2 and

give it to the veto player; i.e., consider y = (4, 3, 2, 2; 1). Allocation y is unstable, and player #1

will necessarily be expropriated. However, the way redistribution may take place is not unique; for

example, φ (y) = (3, 3, 2, 2; 2) is possible, but so is φ (y) = (2, 3, 3, 2; 2) or φ (y) = (2, 3, 2, 3; 2). Now

suppose that one of the players possessing two units, say player #3, was expropriated, i.e., take

z = (4, 4, 1, 2; 1). Then it is possible that the other member, player #4, would be expropriated as

well: φ (z) = (4, 4, 1, 1; 2). But it is also possible that one of the richer players may be expropriated

instead: e.g., a transition to φ (z) = (4, 1, 1, 4; 2) would be supported by all players except #2.

Example 6 demonstrates that equilibrium protection that agents provide to each other may

extend beyond members of the same group. In the latter case, player #2 would oppose a move

from (4, 4, 2, 2; 0) to (4, 4, 1, 2; 1) if in the subgame the next move is to (4, 1, 1, 4; 2). Thus, richer

players might protect poorer ones, but not vice versa; as Proposition 4 below shows, this is a general

phenomenon.

We see that in general, an exogenous shock may lead to expropriation, on the subsequent

equilibrium path, of players belonging to different wealth groups; the particular path depends on the

equilibrium mapping, which is not unique. However, if we apply the refinement that only equilibria

with a “minimal” (in terms of the number of units that need to be transferred) redistribution

along the equilibrium path are allowed, then only the players with exactly the same wealth would

suffer from the redistribution that follows a shock. More importantly, Example 6 demonstrates the

mechanism of mutual protection among players with the same wealth. If a non-veto player becomes

poorer, at least d− 1 other players would suffer in the subsequent redistribution. This makes them

willing to oppose any redistribution from any of their members. Their number, if we include the

initial expropriation target himself, is d, which is suffi cient to block a transition. Thus, members

of the same group have an incentive to act as a politically cohesive coalition, in which its members

mutually protect each others’economic interests.

Proposition 3 also allows for the following simple corollary.

Corollary 2 Suppose that in game Γ defined above, the set of stable allocations (in any protocol-free

MPE) is S. Take any integer h > 1, and consider the set of allocations Ah given by

Ah =
{
x ∈

(
R+
)n

: ‖x‖ ≤ b and ∀i ∈ N,hxi ∈ Z
}
.

Take βh > 1− 1
bh+2 , εh <

1−β
b(h+1) , and δh < εh. Then the set of stable allocations in the new game

Γh (again, in any protocol-free MPE) Sh satisfies S ⊂ Sh.

In other words, taking a finer partition of units of redistributions (splitting each unit into h

indivisible parts) preserves stable allocations. This result follows immediately from Proposition
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3 Part 2. It effectively says that even though our results are obtained under the assumption of

discrete number of indivisible units, they have a broader appeal: once dividing units into several

parts is allowed, the stable allocations remain stable. This implies that the set S not only describes

stable outcomes for any appropriately refined equilibrium within the game, but is also a robust

predictor of stable allocations if the minimal units are redefined, provided, of course, that players

interact frequently enough.11

The next proposition generalizes Example 6 so that one can better understand the mechanics

of mutual protection. It highlights that protection of a non-veto player is sustained, in equilibrium,

by equally endowed or richer individuals, rather than by those who has less wealth. Proposition 4

is formulated as follows. We take some equilibrium characterized in Proposition 3, and consider a

stable allocation. Then, we consider another, perturbed, allocation, in which one non-veto player

has less wealth. We show that the resulting allocation is unstable, and compare the ultimate stable

allocation with the initial, uperturbed one.

Proposition 4 Consider any MPE σ and let φ = φσ. Suppose that the voting rule is not unanimity

(k < n), so d > 1. Take any stable allocation x ∈ S, some non-veto player i ∈ M , and let new
allocation y ∈ A be such that y|M\{i} = x|M\{i} and yi < xi. Then:

1. Player i will never be as well off as before the shock, but he will not get any worse off:

yi ≤ [φ (y)]i < xi. Furthermore, the number of players who suffer as a result of a redistribution

on the equilibrium path defined by σ is given by:∣∣∣{j ∈M \ {i} : [φ (y)]j < yj

}∣∣∣ = d− 1;

2. Suppose, in addition, that for any k ∈M with xk < xi, xk ≤ yi, i.e., the shock did not make
player i poorer than the players in the next wealth group. Then [φ (y)]j < yj implies xj ≥ xi,
i.e., members of poorer wealth groups do not suffer from redistribution.

The essence of Proposition 4 is that following a negative (exogenous) shock to some player’s

wealth (yi < xi), at least d− 1 other players are expropriated, and player i never fully recovers. If

the shock is relatively minor so the ranking of player i with respect to other wealth groups did not

11Notice that since the sequence of stable sets satisfies S ⊂ S2⊂ S3⊂ · · ·, their limit is a well-defined set S∞ =⋃
j>1 S

j , where the bar denotes topological closure. This set has the following simple structure:

S∞ =
{
x ∈ ∆ | ∃ρ ∈ Sn : xρ(1) = · · · = xρ(d), xρ(d+1) = · · · = xρ(2d), . . . , xρ((r−1)d+1) = · · · = xρ(rd)

}
,

where ∆ is the (N − 1)-dimensional unit simplex and ρ ∈ Sn is any permutation. However, for these limit allocations
to be approached in a noncooperative game that we study, one would have to take a sequence of discount factors βj
that tends to 1, so interactions should be more and more frequent. Intuitively, to study fine partitions of the state
space, one would need finer partition of time intervals as well to prevent ‘undercutting’. If this condition does not
hold, veto players would be able to expropriate everything in the long run (see, e.g., Nunnari, 2016).
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change (weak inequalities are preserved),12 then it must be equally endowed or richer people who

suffer from subsequent redistribution. Thus, in the initial stable allocation x, they have incentives

to protect i from the negative shock. This result may be extended to the case when a negative shock

affects more than one (but less than d) non-veto players. The proof is straightforward when all the

affected players belong to the same wealth group. However, this requirement is not necessary. If

expropriated players belong to different groups, then the lower bound of the resulting wealth after

redistribution is the amount of wealth that the poorest (post-shock) player possesses. In this case,

the number of players who suffer as a result of the redistribution following the shock is still limited

by d− 1.

Our next step is to derive comparative statics with respect to different voting rules given by k

and v.

4 Comparing Voting Rules

Suppose that we vary the supermajority requirement, k, and the number of veto players, v. The

following result easily follows from the characterization in Proposition 3.

Proposition 5 Fix the number of individuals n.

1. The size of each group Gj, j ≥ 1, is decreasing as the supermajority requirement k increases.

In particular, for k = v + 1, d = n− v = m, and thus all the non-veto players form a single

group; for k = n (unanimity rule), d = 1, and so each player can veto any change.

2. The number of groups is weakly increasing in k, from 1 when k = v + 1 to m when k = n

(from 0 when k < v + 1).

3. The size of each group Gj, j ≥ 1 does not depend on the number of veto players, but as v

increases, the number of groups weakly decreases, reaching zero for v > n− d.

This result implies that the size of groups does not depend on the number of veto players, but

only on the supermajority requirement as it determines the minimal size of blocking coalitions. As

the supermajority requirement increases, groups become smaller. This has a very simple intuition:

as redistribution becomes harder (it is necessary to get approval of more players), it takes fewer

non-veto players to defend themselves; as such, smaller groups are suffi cient. Conversely, the largest

group (all non-veto players together) is formed when a single vote from a non-veto player is suffi cient

for veto players to accept a redistribution; in this case, non-veto players can only keep a positive

payoff by holding equal amounts.

12Note that this will always be the case if, e.g., yi = xi − 1.
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Now, consider the number of groups that (the non-veto part of) the society is divided into.

Intuitively, the number of groups corresponds to the maximum possible economic heterogeneity

that a society can have in equilibrium. If we interpret the equally-endowed non-veto members of the

society as economic classes (in the sense that members of the same class have similar possessions,

whereas members of different classes have different amount of wealth, despite having the same

political power), then the number of groups would correspond to the largest number of economic

classes that the society can contain. With this interpretation, Proposition 4 implies that it is

members of the same or richer economic classes that protect a non-veto player from expropriation.

Still, there might be some residual indeterminacy about the number of classes: for any parameters

it is possible that all non-veto players possess zero and thus belong to the same class; similarly, Part

2 of Proposition 3 allows for classes that are larger than others and that span several groups Gj .

Thus, societies with few groups are bound to be homogenous (among non-veto players), whereas

societies with many veto groups might be heterogenous with respect to wealth.

To better understand the determinants of the number of groups, take n large and v small (so

that m is large enough) and start with the smallest possible value of k = v + 1. Then all the

non-veto players possess the same wealth in any equilibrium. In other words, all players, except

perhaps those endowed with veto power, must be equal. If we increase k, then two groups will

form, one of which may possess a positive amount, while the rest possesses zero, which is clearly

more heterogenous than for k = v + 1. If we increase k further beyond v + (m+ 1) /2, then both

groups may possess positive amounts and a third group will form further, etc. In other words, as

k increases, so does the number of groups, which implies that the society becomes less and less

homogenous and can support more and more groups of smaller size. We see that in this model,

heterogeneity of the society is directly linked to diffi culty of expropriation, measured by the degree

of majority needed for expropriation or, equivalently, by the minimal size of a coalition that is able

to resist attempts to expropriate. If we interpret the equally-endowed groups as economic classes,

then we have the following result: the more politically diffi cult it is to expropriate, the finer is the

class division of the society.

Corollary 3 Suppose that k = v+ 1; as before, d = n− v. In this case, an allocation x is stable if
xi = xj for all non-veto players i and j, i.e., if all non-veto players hold the same amount. More

generally, a single group of non-veto players with positive amount of wealth may be formed if and

only if k − v ≡ q ≤ (m+ 1) /2. In this case, some n − k + 1 non-veto players belong to the group

and get the same amount, and the rest get zero.

Proposition 5 dealt with comparing stable allocations for different k and v. We now study

whether or not an allocation that was stable under some rules k and v remains stable if these

rules change. For example, suppose that we make an extra individual a veto player (increase v),
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or increase the majority rule requirement (increase k). A naive intuition would say that in both

these cases, individuals would not be worse off from better property rights protection. As the next

proposition shows, in general, the opposite is likely to be true. Let Sk,V denote the set of stable

allocations under the supermajority requirement k and the set of veto players V.

Proposition 6 Suppose that allocation x is stable for k (k < n) and v (x ∈ Sk,V ). Then:

1. If we increase the number of veto players by granting an individual i /∈ V veto power so that

the new veto set is V ∪ {i}, then allocation x ∈ Sk,V ∪{i} if and only if xi = 0;

2. Suppose k + 1 < n and all groups Gj, j ≥ 0, had different amounts of wealth under x:

xGj 6= xGj′ for j
′ 6= j (and x|M 6= 0). If we increase the majority requirement from k to

k′ = k + 1, and k′ < n, then x /∈ Sk+1,V .

The first part of this proposition suggests that adding a veto player makes an allocation unstable,

and therefore will lead to a redistribution hurting some individual. There is only one exception to

this rule: if the new veto player had nothing to begin with, then the allocation will remain stable.

On the other hand, if the new veto player had a positive amount of wealth, then, while he will

be weakly better off from becoming a veto player, there will be at least one other non-veto player

who will be worse off. Indeed, removing a member of one of the groups Gj without changing the

required sizes of the groups must lead to redistribution. This logic would not apply if V ′ = N ,

when all players become veto players; however, the proposition is still true in this case because

then i would have to be the last non-veto player, and under k < n he would have to get xi = 0 in

a stable allocation x. Interestingly, removing a veto player i (making him non-veto) will also make

x unstable as long as xi > 0. This is, of course, less surprising, as this individual may be expected

to be worse off.

The second part says that if all groups got different allocations (which is the typical case), then

an increase in k would decrease the required group sizes, leading to redistribution. When some

groups have equal amounts of wealth in a stable allocation, then allocation x may, in principle,

remain stable. This is trivially true when all non-veto players get zero (xi = 0 for all i /∈ V ), but,
as the following Example 7 demonstrates, this is possible in other cases as well.

Example 7 Suppose n = 7, V = {#7}, b = 6 and the supermajority requirement is k = 5. Then

x = (1, 1, 1, 1, 1, 1; 0) is a stable allocation, because d = 3 and the non-veto players form two groups

of size three. If we increase k to k′ = 6, then x remains stable, as then d′ = 2 and x has three

groups of size two.
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5 Discussion

In this section, we put two main contributions of our paper, the emergence of a class structure in

a multilateral bargaining setting and the non-monotonic effect of the number of veto players and

supermajority requirements on the stability of allocations, in the context of the existing literature.

Also, we discuss the role of specific technical assumptions.

In Propositions 2 and 3, we established one-to-one correspondence between stable allocations

of the non-cooperative bargaining game and a unique von Neumann-Morgenstern stable set, which

greatly simplified the analysis. Similar links between cooperative and noncooperative definitions

of stability were observed in earlier works: the theoretical foundations for implementation of the

vNM-stable set in noncooperative games are laid down in Anesi (2006, 2010) and Acemoglu, Egorov,

and Sonin (2012), in games of different generality. In contrast with these studies, we allow players

to be indifferent among allocations, which required us to define vNM-stability with respect to

a different dominance relation. The main novel aspect of the current paper is the explicit and

intuitive characterization of the stable set (Proposition 3). This characterization allowed us to

more thoroughly explore the forces that make a stable allocation stable, and to study reactions of

these stable allocations to exogenous shocks, thus identifying players that would resist deviations

from a stable allocation (Proposition 4).

The tractability of the model, made possible by this explicit characterization, allowed to study

comparative statics with respect to the two main parameters: the number of veto players and

the supermajority requirement. In static models, more veto players and/or a higher degree of

supermajority make any given allocation more likely to be stable, because a larger coalition is

required to change it (see, e.g., Tsebelis, 2002, in case of veto players and Chapter 6 in Austen-

Smith and Banks, 2005, in case of supermajority requirements). This paper proves that in dynamic

models the impact of these parameters on stability of allocations is nonmonotone, and it is the first

do so, to the best of knowledge. We also show, in Proposition 6, that an increase in the number of

veto players or the supermajority requirement generically destroys stability of an allocation.

While the idea of non-monotonicity in a multilateral bargaining setting is intuitive, such results

have not been stated formally, most likely due to the diffi culty of obtaining a tractable characteriza-

tion in such models. However, similar effects in literature on voting on reforms (even in two-period

models) have been known. In Barbera and Jackson (2004), if some voting rule is stable, then one

that requires a larger degree of supermajority is not necessarily stable, because while more votes are

needed to change the rule, many more players might find the new rule suboptimal and be willing

to change it. Similarly, Gehlbach and Malesky (2010) show that an additional veto player might

allow for a reform that would have been impossible otherwise as some players fear slippery slope.13

13 In models with information aggregation in voting (e.g., Feddersen and Pesendorfer, 1998), the supermajority
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The explicit characterization demonstrates that stable allocations are organized as “economic

classes”, members of which protect each other from expropriation. This is in contrast with the

existing literature on bargaining with an endogenous status quo, starting with Kalandrakis, 2004,

which emphasizes eventual appropriation of the entire surplus by a single player. We would argue

that economic classes comprised of similar individuals is a more realistic outcome. The observation

that different ex ante identical players might be split into groups with similar payoffs has remote

antecedents in the legislative bargaining literature: e.g., in Baron and Ferejohn (1989), the set

of players is ultimately sub-divided into three distinct groups, ordered in terms of wealth: the

proposer, the winning coalition, and the rest.14 In Bernheim, Rangel, and Rayo (2006), the last

proposer is able to implement his ideal policy, thus again dividing the society into three unequal

groups. In these papers, this split into groups resulted from terminal-period effects. Our results

demonstrate that economic classes may emerge in a dynamic environment with no terminal period;

we also study the effects of the models’primitives on their numbers and their sizes, showing, in

particular, that a larger supermajority requirement results in a larger number of smaller classes

(Propositions 3 and 5).

Any model of legislative bargaining makes a number of specific modeling assumptions.15 Perhaps

most consequentially, ours is a model of discrete policy space. Overall, the literature on multilateral

bargaining with endogenous status quo is split between papers that assume a continuous (divide-

a-dollar) policy space and a discrete (e.g., finite) one. Baron and Ferejohn (1989a), Kalandrakis

(2004, 2007, 2010), Baron and Bowen (2013), Richter (2013), Anesi and Seidmann (2014), Nunnari

(2016), among others, assume that the policy space is continuous, while Anesi (2010), Diermeier

and Fong (2011, 2012), and Anesi and Duggan (2016) assume a discrete one, as we do. We view the

benefit of our approach mainly in that it considerably simplifies the analysis: in fact, the use of the

von Neumann-Morgenstern stable set in all voting models that we are aware of requires a discrete

space. While we are not able to analyze the model with a continuous policy space, it is reassuring

that the limit set of our equilibrium allocations when the size of the unit approaches zero has the

same class structure as the set of stable sets in Proposition 3, suggesting further robustness of our

results.

When indifferences are present because of the nature of the model, most papers, including

Kalandrakis (2004), Diermeier and Fong (2011), and Anesi and Duggan (2015), assume that a

player supports the new proposal when indifferent. In contrast, Baron and Bowen (2013) argue

that it is important to assume that players vote against the proposal when indifferent. Anesi and

requirement may have nonmonotone effects as it influences pivotal events that players condition upon.
14While the identity of the first proposer and thus the realized allocation is random, the expected payoffs are

identical in all SPE, as shown by Eraslan (2002) and, in a more general setting, by Eraslan and McLennan (2013).
15There is an important parallel in the coalition formation literature. See, e.g., Seidmann and Winter (1998) on the

impact of the possibility of renegotiation on the structure of the ultimate coalition, and Hyndman and Ray (2007)
on equilibria in games with possible binding constraints.
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Seidmann (2015) assume that players are supportive of the proposal, when indifferent, depending

on the coalition formed on the equilibrium path. (Anesi and Duggan, 2015, extend this construction

to the spatial setting.) We assume that transitions unlock an arbitrarily small budget that may be

used to resolve indifferences. Intuitively, this breaks indifferences in the direction of accepting the

proposal, which is consistent with the contract theory literature (Bolton and Dewatripont, 2004).

The fact that the results hold for any size of this additional budget provided that it is small enough

points to robustness of our equilibria.

6 Conclusion

The modern literature often considers constitutional constraints and other formal institutions as

instruments of property rights protection. The relationship between veto power given to different

government bodies, supermajority requirements, or additional checks and balances and better pro-

tection seems so obvious that there is little left to explain. Allston and Mueller (2008) proclaim:

“A set of universally shared beliefs in a system of checks and balances is what separates populist

democracies from democracies with respect for the rule of law.” Yet, from a political economy

perspective, property rights systems should be understood as equilibrium outcomes rather than

exogenous fixed constraints. Legislators or, more generally, any political actors cannot commit to

entitlements, prerogatives, and rights. Rather, any allocation must be maintained in equilibrium.

Our results suggest that a dynamic perspective may lead to a more subtle understanding of the

effects of veto players and supermajority rules. In a dynamic environment, they lead to emergence

of endogenous veto groups of players that sustain a stable allocation in equilibrium. The society

has a “class structure”: any non-veto player with a positive wealth is part of a group of equally-

endowed individuals who have incentives to protect each other’s interests. The effect of exogenous

constraints on endogenous veto groups is complex. One the one hand, endogenous veto groups may

protect each other in equilibrium even in the absence of formal veto rights. One the other hand,

adding more veto players may lead to more instability and policy change if such additions upset

dynamic equilibria where players were mutually protecting each other.

Models of multilateral bargaining with endogenous status quo seem to be a natural and very

fruitful approach to study the political economy of property rights protection. Our results point

to the importance of looking beyond formally defined property rights, and more, generally, beyond

formal institutions. Thus, a change in formal institutions might strengthen protection of property

rights of designated players, yet have negative consequences for protection of property rights of the

others, and, as a result, a negative overall effect.
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